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Abstract. Two-species occupancy models that account for false absences provide a robust
method for testing for evidence of competitive exclusion, but previous model parameteriza-
tions were inadequate for incorporating covariates. We present a new parameterization that is
stable when covariates are included: the conditional two-species occupancy model, which can
be used to examine alternative hypotheses for species’ distribution patterns. This new model
estimates the probability of occupancy for a subordinate species conditional upon the presence
of a dominant species. It can also be used to test if the detection of either species differs when
one or both species are present, and if detection of the subordinate species depends on the
detection of the dominant species when both are present. We apply the model to test if the
presence of the larger Virginia Rail (Rallus limicola) affects probabilities of detection or
occupancy of the smaller California Black Rail (Laterallus jamaicensis coturniculus) in small
freshwater marshes that range in size from 0.013 to 13.99 ha. We hypothesized that Black Rail
occupancy should be lower in small marshes when Virginia Rails are present than when they
are absent, because resources are presumably more limited and interference competition
should increase. We found that Black Rail detection probability was unaffected by the
detection of Virginia Rails, while, surprisingly, Black and Virginia Rail occupancy were
positively associated even in small marshes. The average probability of Black Rail occupancy
was higher when Virginia Rails were present (0.74 6 0.053, mean 6 SE) than when they were
absent (0.36 6 0.069), and for both species occupancy increased with marsh size. Our results
contrast with recent findings from patchy forest systems, where small birds were presumed to
be excluded from small habitat patches by larger competitors.

Key words: Black Rail; detection probability; interspecific competition; Laterallus jamaicensis
coturniculus; Rallus limicola; species co-occurrence; two-species occupancy models; Virginia Rail.

INTRODUCTION

Interspecific competition plays an important role in

structuring ecological communities (Rosenzweig 1995).

For example, larger species may exclude smaller ones

from territories or high-value food resources through

interference competition (Persson 1985, Pimm et al.

1985, Robinson and Terborgh 1995, St-Pierre et al.

2006), and these interactions are expected to be strongest

under conditions of resource limitation (Wiens 1989).

Recent studies of avian communities in fragmented

forest systems (Brown and Sullivan 2005, Brown 2007)

used patch size as a proxy for resource availability and

showed that, in small fragments, large- and medium-

sized bird species increased in abundance while small

bird species declined, offering circumstantial evidence

for interspecific competitive exclusion. However, using

differences in observed species occurrences as evidence

of competitive exclusion may lead to incorrect inferences

about both the magnitude and direction of competition

unless analyses account for two important factors: false

absences and habitat covariates (Lynch and Johnson

1974, MacKenzie et al. 2004, 2006). The development of

robust and flexible methods for characterizing species

interactions is needed, particularly for species distribu-

tion modeling applications that have become central to

predicting community responses to climate change (Elith

and Leathwick 2009).

MacKenzie et al. (2004, 2006) developed a flexible,

likelihood-based two-species occupancy model that

accounts for imperfect detection for analyzing species

co-occurrence patterns from repeated presence–absence

survey data. The model directly estimates a ‘‘species

interaction factor’’ (hereafter SIF) that is a ratio of how

likely the two species are to co-occur compared to what

would be expected under a hypothesis of independence.

This two-species occupancy model has been used to

examine co-occurrence patterns of terrestrial salaman-

ders (MacKenzie et al. 2004), vipers (Luiselli 2006), and

owls (Bailey et al. 2009). In addition to providing

unbiased estimates of co-occurrence, their model can be

used to examine how the presence or detection of one
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species might affect the detection probability of the

other. For example, Bailey et al. (2009) found evidence

that the detection probability of Barred Owls (Strix

varia) and Northern Spotted Owls (Strix occidentalis

caurina) was negatively influenced by the presence of the

congeneric species. However, a limitation of the two-

species model parameterization of MacKenzie et al.

(2004, 2006) is that it can fail to converge when

covariates are included and a SIF is directly estimated.

Developing a two-species occupancy model that suc-

cessfully incorporates habitat covariates is crucial

because habitat preferences are a major factor deter-

mining species distributions (Morrison et al. 2006) and

they can generate co-occurrence patterns that may

incorrectly be interpreted as a product of interspecific

competitive exclusion.

Here we present a new parameterization for the two-

species occupancy model called the ‘‘conditional two-

species occupancy model’’ that successfully incorporates

covariates. We then apply it to examine co-occurrence

patterns of two secretive wetland birds, the California

Black Rail (Laterallus jamaicensis coturniculus) and

Virginia Rail (Rallus limicola), across a range of marsh

sizes. Understanding co-occurrence patterns for Black

and Virginia Rails is important because competitive

interactions are a potential factor that may influence the

sparse and patchy distribution of the Black Rail

throughout North America (Eddleman et al. 1994) and

in California, where it is legally protected as a

threatened subspecies (California Department of Fish

and Game 2008). We first examine factors that may

affect the detection probability for each species, and

then test for evidence of an association between Black

and Virginia Rail occupancy. Lastly, we test three

predictions for co-occurrence patterns related to patch

area: (1) Black Rails should have a higher probability of

occupancy in small marshes than Virginia Rails because

they have a smaller home range; (2) in small marshes

where resources are presumably more limited, Black

Rail occupancy should be lower when Virginia Rails are

present than when they are absent because interference

competition should increase; and (3) the probability of

occupancy for both species should increase with marsh

area, because larger marshes should provide a wider

range of microhabitats and contain more resources to

support both species.

PARAMETERIZATION OF THE CONDITIONAL TWO-SPECIES

OCCUPANCY MODEL

The conditional two-species occupancy model can be

represented as a hierarchical tree of conditional occu-

pancy and detection probabilities, where species A is

assumed to be dominant and species B subordinate. The

top branch of the model (Fig. 1, Table 1) represents the

unconditional probability of occupancy (wA) or absence

(1 � wA) for species A. The second, lower, set of

branches represent the probabilities of occupancy (wBA)

or absence (1� wBA) for species B conditional on species

A being present, and the probability of occupancy (wBa)

or absence (1� wBa) for species B conditional on species

A being absent. The remaining lower branches represent

probabilities of detection for species A and B that are

conditional on the occupancy status of both species (Fig.

1, Table 1; further details on detection will be provided).

Note that the probability of detection is not equivalent

to the probability of detecting an individual of a given

species, but rather is the probability of detecting at least

FIG. 1. Model structure for the conditional parameterization of the single-season two-species occupancy model, where species
A is assumed to be dominant and species B subordinate. Parameters are the probabilities of occupancy (w), detection where one
species is absent ( p), and detection where both species are present (r); superscript ‘‘a’’ indicates that species A is absent (for wBa) or
is present but not detected (for rBa). See Table 1 for all definitions. All unlabeled branches correspond to one minus the opposite
labeled branch (e.g., the unlabeled branch opposite wA is equal to 1 – wA).
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one individual of a species at a site that may contain

multiple individuals.
This new model structure differs from the parameter-

ization developed by MacKenzie et al. (2004, 2006) in
three main ways: (1) In the previous parameterization,
the probabilities of occupancy for both species were

unconditional, whereas in the new parameterization the
probability of occupancy for species A is unconditional

and the probability of occupancy for species B is
conditional on either the presence or absence of species
A. The unconditional probability of occupancy for

species B can be calculated using the parameters in the
new model as wB ¼ wAwBA þ (1 � wA)wBa. (2) The

probability of both species being present at a site (wAB)
is not estimated directly but can be calculated using the
parameters in the new model as wAB ¼ wAwBA. (3) A

SIF, designated in Mackenzie et al. (2004) as ‘‘c’’ and in
MacKenzie et al. (2006) and hereafter as ‘‘u,’’ is not

estimated directly. The SIF of MacKenzie et al. (2004,
2006) was expressed as: u¼ wAB/wAwB, where wA is the
unconditional probability of occupancy for species A

and wB is the unconditional probability of occupancy for
species B. From the parameters in our new model, the

SIF can be calculated as

u ¼ wAwBA

wA
�
wAwBA þ ð1� wAÞwBa

�

(Fig. 1, Table 1). If the two species occur independently,
then the SIF is equal to one. An SIF less than one
indicates that species B is less likely to co-occur with

species A than expected under a hypothesis of indepen-
dence (i.e., avoidance), whereas values greater than one

indicate that species B is more likely to co-occur with
species A than expected under a hypothesis of indepen-
dence (i.e., aggregation).

Data used in the conditional two-species occupancy

model are detection histories that consist of sequences of

detections (1) and non-detections (0) for each visit or

sampling occasion at N sites for each species during a

given sampling period or season. Sites are assumed to be

closed to changes in occupancy state for each species for

the duration of each season. Thus, a species is assumed

to be either always present or always absent at a given

site during a season. As a general example, we present a

case with three independent surveys conducted at each

sample location. The detection history XA
i ¼ 110 signifies

that location i was surveyed on three occasions during

one season, and species A was only detected on the first

and second visits. The detection history XB
i ¼ 000

signifies that location i was surveyed on three occasions,

and species B was not detected on any visit. We will

describe the model, following the general framework

presented by MacKenzie et al. (2004, 2006), but

incorporating the new conditional parameterization.

For each site there are four possible occupancy states

for two species: (1) both species A and B are present; (2)

only species A is present; (3) only species B is present; or

(4) neither species is present. Using the new parameters

in Table 1 and Fig. 1, we define a row vector for the

probability of location i being in each of the four

respective states as in Eq. 1 (below), where the elements

of /i sum to 1.

The probability of observing the detection histories

for the two species, conditional on the occupancy state

of the site, can be stated in terms of detection

parameters. Considering the example detection histories

presented above (XA
i ¼ 110 and XB

i ¼ 000), there are two

possible occupancy states. First, the surveyors could

have failed to detect species B and the location is

actually occupied by both species, in which case the

probability of observing the given detection histories is

PrðXA
i ¼ 110 and XB

i ¼ 000 j both species presentÞ

¼ rA
i1ð1� rBA

i1 ÞrA
i2ð1� rBA

i2 Þð1� rA
i3Þð1� rBa

i3 Þ ð2Þ

where rA is the probability of detecting species A when

both species are present, rBA is the probability of

detecting species B when both species are present and

A is detected, rBa is the probability of detecting species B

when both species are present but A is not detected
(Table 1 and Fig. 1), i corresponds to the location, and

the subscript number corresponds to the visit number.

Alternatively, if the site is only occupied by species A,

the probability of observing the detection histories is

PrðXA
i ¼ 110 and XB

i ¼ 000 j only species A presentÞ

¼ pA
i1pA

i2ð1� pA
i3Þ ð3Þ

where pA is the probability of detecting species A when

only A is present (Table 1, Fig. 1). The probability of

TABLE 1. Descriptions of the parameters used in the condi-
tional two-species occupancy model.

Parameter Description

wA Probability of occupancy for species A
wBA Probability of occupancy for species B, given

species A is present
wBa Probability of occupancy for species B, given

species A is absent
pA Probability of detection for species A, given species

B is absent
pB Probability of detection for species B, given species

A is absent
rA Probability of detection for species A, given both

species are present
rBA Probability of detection for species B, given both

species are present and species A is detected
rBa Probability of detection for species B, given both

species are present and species A is not detected

Note: Species A is assumed to be dominant, and species B
subordinate.

/i ¼ ½wA
i wBA

i wA
i ð1� wBA

i Þ ð1� wA
i Þw

Ba
i ð1� wA

i Þð1� wBa
i Þ� ð1Þ
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observing the given detection histories for the other two

possible occupancy states (occupied by species B only

and occupied by neither species) is 0, because species A

was detected and the model, as parameterized, does not

consider false presences.

We define a column vector,

p
XAf g; XBf g

i

representing the probabilities of observing the example

detection histories, conditional upon each occupancy

state and described by the parameters in Table 1 and

Fig. 1, as follows:

p
110f g; 000f g

i ¼
rA

i1ð1� rBA
i1 ÞrA

i2ð1� rBA
i2 Þð1� rA

i3Þð1� rBa
i3 Þ

pA
i1pA

i2ð1� pA
i3Þ

0

0

2
664

3
775:

ð4Þ

We then calculate the unconditional probability of

observing the detection histories as

PrðXA
i ;X

B
i Þ ¼ /ip

XAf g; XBf g
i : ð5Þ

Assuming that the collection of the detection histories at

the N locations was independent, we define the model

likelihood as follows:

L ¼
YN
i¼1

PrðXA
i ;X

B
i Þ: ð6Þ

Missing observations that apply to both species at a

given survey occasion contribute no information about

model parameters (MacKenzie et al. 2006). This is

accomplished by removing the respective detection

parameters from the probability equation for a given

detection history. For example, if the detection histories

XA
i ¼ 1-- and XB

i ¼ 0-- are obtained (where ‘‘-’’ represents

a missing observation), then

p
1--f g; 0--f g

i ¼
rA

i1ð1� rBA
i1 Þ

pA
i1

0

0

2
664

3
775: ð7Þ

In situations where a missing observation occurs for one

species but not the other on a given survey, all

possibilities for the missing observation (that the species

in question was present and detected, was present and

not detected, or was absent) are included within the

probability statement for the detection history

(MacKenzie et al. 2006).

We test for species interactions related to occupancy

and detection probabilities by obtaining the maximum

likelihood estimates (MLEs) of the parameters in Eq. 6

and then use a model selection approach (Burnham and

Anderson 2002) to rank competing models. Specifically,

we can test three biological questions: (1) Does the

probability of occupancy of the subordinate species

depend on the presence of the dominant species? (2)

Does the detection probability of the subordinate species

depend on the presence of the dominant species? (3)

Does the detection probability of the subordinate species

depend on the detection of the dominant species when

both species are present? The first question is usually of

greatest biological interest and is relevant to studies that

aim to test, for example, hypotheses of competitive

exclusion. The second question is relevant for cases in

which the presence of one species, for example, a

predator, may affect the behavior of a prey species by

lowering (or raising) its probability of detection. The

third question is relevant for cases in which the detection

of a dominant species may affect the probability of

detecting a subordinate species, assuming both species

are present. For example, a call playback survey that

stimulates a vocal response from a dominant species

may either increase or decrease the probability of

detecting a subordinate species.

The preceding biological hypotheses can be explicitly

tested using different formulations of the two-species

model. We can determine if occupancy of the subordi-

nate species depends on the presence of the dominant

species by comparing model performance when wBA and

wBa are estimated separately (i.e., the presence of species

B is conditional on the presence of species A), or when

wBA ¼ wBa (i.e., the presence of species B is uncondi-

tional). We can determine if the detection of the

subordinate species is conditional on the presence of

the dominant species or is unconditional by comparing

model performance when pB (the probability of detect-

ing species B when only B is present; Table 1, Fig. 1) is

estimated separately from rBA and rBa (assuming rBA ¼
rBa), or when pB ¼ rBA ¼ rBa. Although we do not

consider it in our case study, the model formulation can

be used to determine if the detection probability of the

dominant species is conditional on the presence of the

subordinate species by comparing model performance

when pA and rA are estimated separately, or when pA¼
rA. This circumstance could potentially arise if a

predator became more secretive in the presence of a

prey species, e.g., while hunting. Finally, we can

determine if the detection of the subordinate species is

conditional on the detection of the dominant species

when both are present or is unconditional by comparing

model performance when rBA and rBa are estimated

separately or when rBA ¼ rBa.

Covariates such as environmental or temporal vari-

ables can be incorporated into occupancy and detection

probability estimation using the multinomial logistic

model:

hk
i ¼

expðYibkÞ

1þ
Xm�1

k¼1

expðYibkÞ
for k ¼ 1; 2; . . . ;m� 1 ð8Þ

where hk
i is the probability of occupancy or detection, Yi

is a row vector of the covariate values for the ith
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location, bk is a column vector of the coefficients to be

estimated, and m is the number of discrete occupancy or
detection outcomes. Eq. 8 reduces to the binomial

logistic model in cases when there are two outcomes
(present/absent or detected/not detected). In Eq. 8, hk

i is

constrained to be in the interval (0, 1) by the structure of
the equation. In previous parameterizations (MacKenzie
et al. 2004), some parameters such as the SIF were not

constrained to this interval, but instead were constrained
to the interval (0, ‘) by omitting the denominator. This

can lead to possible values for beta parameters that are
impossible occupancy probabilities (e.g., c¼ 7.33, wA ¼
0.5, and wAB¼2.2). Computation of the likelihood value
based on these parameters was the source of the

convergence problems in the likelihood function opti-
mization in the previous two-species occupancy model

(MacKenzie et al. 2004). The new conditional two-
species model parameterization is stable when covariates

are incorporated and is an improvement upon the
previous model that directly estimated a species inter-

action factor (MacKenzie et al. 2004, 2006).

METHODS

Case study: Black and Virginia Rails

We applied the conditional two-species occupancy
model to co-occurring Black and Virginia Rails that

inhabit a network of freshwater palustrine emergent
persistent wetlands in the Sierra Nevada foothills of

California, USA (Richmond et al. 2008). Limited
information on food preferences suggests that Black

and Virginia Rails have similar diets (Eddleman et al.
1994, Conway 1995), and our preliminary analyses of

stable isotopic signatures from feathers suggests diet
overlap (S. R. Beissinger, unpublished data). Both species

feed mainly on small aquatic invertebrates and the seeds
of emergent plants, and other aspects of their natural
history are similar (Eddleman et al. 1994, Conway

1995). Virginia Rails weigh up to three times as much as
Black Rails, have larger home ranges, and are much

more widely distributed throughout North America
than Black Rails (Eddleman et al. 1994, Conway 1995).

Very little is known about interactions between cryptic
rallids, although Virginia Rails appear tolerant of the

slightly smaller Sora (Porzana carolina) in other parts of
their range (Pospichal and Marshall 1954, Kaufmann

1989).
We surveyed for rails from June through August at

166 freshwater marshes in 2005 and 192 marshes in 2006
in Butte, Nevada, and Yuba counties, California, as

described in Richmond et al. (2008). We mapped marsh
perimeters using a backpack Trimble GPS unit

(Trimble, Sunnyvale, California, USA) capable of
determining three-dimensional positions with 0.5-m

accuracy. We excluded large areas of open water and
areas with non-emergent vegetation (non-rail habitat)
from marsh area calculations. Marsh area averaged 1.17

6 1.80 ha (mean 6 SD) with a range of 0.01–13.99 ha
and a median area of 0.52 ha.

We surveyed for the presence of rails at each marsh

using call playback surveys, a standard method used

with secretive wetland birds (Evens et al. 1991, Legare et

al. 1999, Spear et al. 1999, Conway et al. 2004). In each

year, we visited marshes up to three times to survey for

Black Rails using a removal design (MacKenzie et al.

2006), where in each year we did not revisit a marsh

after the first Black Rail detection. During all Black Rail

surveys, we concurrently surveyed for Virginia Rails

even if Virginia Rails had already been detected at that

marsh; thus, at some sites we detected Virginia Rails on

multiple visits within a year. We conducted call playback

surveys for Black Rails following methods described in

Richmond et al. (2008). For Virginia Rails we conducted

playback surveys at up to two locations per marsh in

2005 and at up to half of the Black Rail playback

stations in 2006. Thus, on average, there were more

Virginia Rail playback stations in 2006 per marsh than

in 2005. The Virginia Rail playback sequence was

always played after the Black Rail sequence and

consisted of 2 min of silent listening and two sets of

interspersed ‘‘tick-it’’ and ‘‘grunt’’ calls (Conway 1995)

lasting 30 s each, followed by 30 s of listening between

sets.

Analyzing factors affecting detection probability

and co-occurrence patterns

Candidate model sets for the conditional two-species

parameterization can become very large because it has a

minimum of 4–8 parameters, depending on whether

occupancy and/or detection probabilities are modeled

conditionally or unconditionally, that can each be fit

with combinations of covariates. This necessitated a

two-step process for model selection. First, we identified

the best detection models for each species by evaluating

the effect of covariates on detection probabilities

separately (16 models for Virginia Rails and 8 models

for Black Rails) using single-season, single-species

occupancy models in Program PRESENCE, version

2.4 (Hines 2006). Using the best detection covariates for

each species from this analysis, we then developed a set

of 108 candidate models for simultaneously testing the

effect of: (1) Virginia Rail presence and detection on

Black Rail detection probability; (2) Virginia Rail

presence on Black Rail occupancy; and (3) patch area

and year on occupancy for both species. In this step we

fit single-season, two-species occupancy models in

Program PRESENCE, version 2.4 (Hines 2006) using

the conditional two-species model parameterization,

termed the ‘‘psiBa parameterization’’ in PRESENCE.

The two-step approach to model selection allowed us to

simplify the structure of nuisance (detection) parameters

when examining the comparisons of greatest interest.

Had we not taken this approach, our model set would

have consisted of ;20 480 candidate models. Details of

each step are presented next.

To identify the best detection model, we held

occupancy constant (w(.)) and fit: (1) 16 single-season,
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single-species occupancy models for Virginia Rails to

test the effects of Julian day (day 1¼ 1 January), time of

day, year, and visit on detection probability (Appendix

A); and (2) 8 models for Black Rails with the same

detection covariates, except that we did not fit models

where detection probability varied by visit because Black

Rail surveys were conducted using a removal model

design, which resulted in no repeat detections in a given

year (Appendix A). We predicted that detection

probability would increase with Julian day for both

species because incubation can suppress the responsive-

ness of breeding adults to playbacks early in the survey

period (Legare et al. 1999, Spear et al. 1999) and

fledglings increase the number of potential responders

later in the breeding season. We had no a priori

prediction for whether morning or evening surveys

would be associated with higher detection probabilities,

because previous studies reported conflicting results

(Spear et al. 1999, Conway et al. 2004). We tested

models where detection probability varied by visit for

Virginia Rails because there is evidence that rallids

(Huxley and Wilkinson 1979) and other birds (Dong

and Clayton 2009) can habituate to playback over time.

We predicted that detection probability would be: (1)

higher for Virginia Rails in 2006 compared to 2005

because there were more Virginia Rail playback stations

per site in 2006 compared to 2005; and (2) stable across

years for Black Rails because their survey protocol was

consistent. To evaluate if the detection covariate

analysis was affected by the choice of the occupancy

model, we ran the same detection candidate model sets

for each species using a global occupancy model that

included all potential occupancy covariates and interac-

tions, and found that the AIC rankings of the detection

covariates were unchanged (O. M. W. Richmond and

S. R. Beissinger, unpublished data).

We then used the best detection covariates for each

species in the conditional two-species occupancy model

to simultaneously test whether the detection probability

of Black Rails was conditional on the presence or

detection of Virginia Rails, whether Black Rail occu-

pancy was conditional on the presence of Virginia Rails,

and whether occupancy for each species was influenced

by covariates. We predicted that the detection of

Virginia Rails would have no effect on the detection

probability of Black Rails when both were present,

because we always played Black Rail vocalizations first

in the playback sequence. However, if Virginia Rails act

as dominant competitors, their presence might be

expected to reduce Black Rail detection probability

and/or occupancy. We examined the effects of marsh

area, area2, and year on occupancy for both species. We

fit models with area 3 species and area2 3 species

interactions, where Black Rail occupancy was modeled

as either conditional or unconditional on the presence of

Virginia Rails. We also fit models with year 3 species

interactions, where Black Rail occupancy was modeled

unconditionally, and we fit additive models that

included combinations of covariates and species inter-

actions. A total of 108 candidate models were in the final
model set (Appendix B). We model-averaged the top 20

models, which had a cumulative AIC weight of 0.952, to
obtain estimates of the probability of occupancy for

each species as a function of marsh area and year
(Burnham and Anderson 2002). We calculated the SIF

as a function of marsh area using the model-averaged
occupancy estimates for each species. We applied the
delta method (Kendall and Stuart 1969) to estimate

confidence intervals for the probabilities of occupancy
for each species and for the SIF using the function

‘‘deltamethod’’ in the msm package in Program R
version 2.7.2 (R Development Core Team 2008). Means

are presented 6 one standard error (SE).

RESULTS

Effect of covariates on rail detection probability

Factors affecting detection rates differed between rail

species (Appendix A). For Virginia Rails, the model
with the most support included visit-specific detection

probabilities and year as a detection covariate; models
with year had a cumulative Akaike weight of 0.75 and
models with visit-specific detection had a cumulative

Akaike weight of 0.57. Mean detection probability
calculated from the best Virginia Rail detection model

declined with visit (0.75 6 0.010, 0.62 6 0.013, and 0.59
6 0.014 for the first, second, and third visits, respec-

tively) and, as expected, Virginia Rails had a higher
mean probability of detection in 2006 (0.73 6 0.017)

than in 2005 (0.56 6 0.013). For Black Rails, the
detection model with the most support included Julian

day (cumulative Akaike weight of 0.60); as predicted,
there was a positive association between detection

probability and Julian day. Mean detection probabilities
for a single survey (visit) calculated from the top model

for each species (Appendix A) were higher for Black
Rails (0.85 6 0.033) than for Virginia Rails (0.65 6

0.076).

Modeling rail co-occurrence patterns

Black Rail detection probability did not appear to be
affected by Virginia Rail detection when both species

were present (Tables 2 and 3). Models that assumed no
effect of Virginia Rail detection on Black Rail detection

probability received strong support (Table 3), with a
cumulative Akaike weight of 0.87. The relationship

between Black Rail detection probability and the
presence of Virginia Rails yielded similar but more

ambiguous results. Models that assumed no effect of
Virginia Rail occupancy on Black Rail detection

probability had a cumulative Akaike weight of 0.58,
whereas models that assumed an effect had a cumulative

Akaike weight of 0.42 (Table 3). The average detection
probability for Black Rails was slightly higher when

Virginia Rails were present (0.87 6 0.040) than when
they were absent (0.82 6 0.059); these results were

obtained by model-averaging estimates from the 12
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models in the top 20 that included an effect of Virginia

Rail presence on Black Rail detection probability.

The probabilities of occupancy for Black and Virginia

Rails were strongly positively associated. Models that

assumed that Black Rail occupancy was conditional on

the presence of Virginia Rails greatly outperformed

models that assumed an independent relationship

(cumulative Akaike weight of 0.99 vs. 0.01; Tables 2

and 3). The mean probability of Black Rail occupancy,

model-averaged over the top 20 models, was greater

when Virginia Rails were present (0.74 6 0.053) than

when Virginia Rails were absent (0.36 6 0.069).

The unconditional probabilities of occupancy for

Black and Virginia Rails had similar positive, nonlinear

TABLE 2. The 20 top-performing two-species occupancy models examining interactions between Black and Virginia Rails
(Laterallus jamaicensis coturniculus and Rallus limicola) out of a total set of 108 models (see Appendix B for the entire model set
and additional model details).

Occupancy
model Occupancy covariates

Detection
model K DAIC w

wAwBAwBa Area, Area 3 Species(C), Area2,
Area2 3 Species(C)

pApB 15 0.00 0.204

wAwBAwBa Area, Area 3 Species(C), Area2,
Area2 3 Species(C), Year

pApB 16 0.46 0.162

wAwBAwBa Area, Area 3 Species(C), Area2,
Area2 3 Species(C)

pApBrB 16 1.32 0.105

wAwBAwBa Area, Area 3 Species(C), Area2,
Area2 3 Species(C), Year

pApBrB 17 1.81 0.082

wAwBAwBa Area, Area 3 Species(C), Area2,
Area2 3 Species(C), Year,
Year 3 Species(U)

pApB 17 2.41 0.061

wAwBAwBa Area, Area 3 Species(C) pApB 12 2.89 0.048
wAwBAwBa Area, Area 3 Species(C), Area2,

Area2 3 Species(C)
pApBrBArBa 17 3.05 0.044

wAwBAwBa Area, Area 3 Species(C), Year pApB 13 3.30 0.039
wAwBAwBa Area, Area 3 Species(C), Area2,

Area2 3 Species(C), Year
pApBrBArBa 18 3.52 0.035

wAwBAwBa Area, Area 3 Species(C), Area2,
Area2 3 Species(C), Year,
Year 3 Species(U)

pApBrB 18 3.75 0.031

wAwBAwBa Area, Area 3 Species(C) pApBrB 13 4.52 0.021
wAwBAwBa Area, Area 3 Species(U) pApB 11 4.54 0.021
wAwBAwBa Area, Area 3 Species(C), Year pApBrB 14 4.99 0.017
wAwBAwBa Area, Area 3 Species(C), Year,

Year 3 Species(U)
pApB 14 5.16 0.015

wAwBAwBa Area, Area 3 Species(U), Year pApB 12 5.34 0.014
wAwBAwBa Area, Area 3 Species(C), Area2,

Area2 3 Species(C), Year,
Year 3 Species(U)

pApBrBArBa 19 5.47 0.013

wAwBAwBa Area, Area 3 Species(U) pApBrB 12 5.53 0.013
wAwBAwBa Area, Area 3 Species(C) pApBrBArBa 14 5.94 0.010
wAwBAwBa Area, Area 3 Species(C), Year pApBrBArBa 15 6.29 0.009
wAwBAwBa Area, Area 3 Species(U), Year pApBrB 13 6.37 0.008

Notes: The cumulative Akaike weight for the top 20 models was 0.952. Occupancy covariates included Area, Area2, Year, and
interactions by species (Area 3 Species, Area2 3 Species, and Year 3 Species). For Black Rails, the interactions by species were
either unconditional (U) or conditional (C) on the presence of Virginia Rails. K is the number of parameters, DAIC is the difference
in AIC relative to the best model, and w is the Akaike weight that indicates the relative support for each model.

TABLE 3. Relative support for different formulations of a two-species occupancy model where Black Rail occupancy was either
conditional (C) or unconditional (U) on Virginia Rail occupancy, and where Black Rail detection probability was either
conditional or unconditional on Virginia Rail occupancy or detection, respectively.

Effect of Virginia Rail
occupancy on

Black Rail occupancy

Effect of Virginia Rail
occupancy on

Black Rail detection

Effect of Virginia Rail
detection on

Black Rail detection N wþ

C U U 18 0.579
C C U 18 0.2936
C C C 18 0.127
U C C 18 0.000
U U U 18 0.000
U C U 18 0.000

Notes: N is the number of models and wþ is the relative importance weight: the summed Akaike weights for all models sharing a
given model structure in the set of 108 models (Appendix B).
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relationships with marsh area, but the response differed

between species (Fig. 2, Tables 2 and 4). Models with

area, area2, and interactions with species (for Black

Rails conditional on the presence or absence of Virginia

Rails) were particularly well supported (cumulative

Akaike weight ¼ 0.63) and there were small differences

in occupancy between years (Tables 2 and 4). Our

prediction that occupancy for Black Rails should be

higher in smaller marshes than for Virginia Rails was

supported (Fig. 2), although both species sometimes

occurred in very small marshes. Black Rails were present

in marshes as small as 0.01 ha, whereas Virginia Rails

occurred in marshes as small as 0.06 ha. At median-sized

marshes (Fig. 2), Black Rails had a higher model-

averaged unconditional probability of occupancy (0.54

6 0.041 in 2005; 0.57 6 0.039 in 2006) than Virginia

Rails (0.37 6 0.049 in 2005; 0.40 6 0.046 in 2006), while

Virginia Rails had a higher probability occupancy in

larger marshes (.1.5 ha), although confidence intervals

for the two species overlapped across the range of marsh

sizes (Fig. 2).

Contrary to our expectation, Black Rails had a higher

probability of occupancy in both small and large

marshes when Virginia Rails were present compared to

when they were absent (Fig. 3). In fact, Black and

Virginia Rails were most likely to co-occur in the

smallest marshes and appeared to be distributed

independently at larger marshes. The model-averaged

SIF at median sized marshes was 1.33 (95% CI ¼ 1.13–

1.53) in 2005 and 1.29 (95% CI¼ 1.12–1.47) in 2006, was

above 1 for marshes ,5 ha in area, and was

approximately equal to 1 for marshes .5 ha (Fig. 4).

This relationship differed only slightly between years

(Fig. 4).

DISCUSSION

The conditional two-species occupancy model pre-

sented here introduces a powerful tool for examining

species co-occurrence patterns. Improving on the

previous parameterization of MacKenzie et al. (2004,

FIG. 2. Estimated unconditional probabilities of occupancy
for Virginia Rails (VR; Rallus limicola) and Black Rails (BR;
Laterallus jamaicensis coturniculus) as a function of marsh area
and survey year. Results were model-averaged across the top-
performing 20 models presented in Table 2 (cumulative Akaike
weight of 0.952) out of a total set of 108 models (Appendix B).
‘‘Median’’ is the median marsh area. Thin lines are 2005 data,
and heavy lines are 2006 data. Gray lines show the 95%
confidence intervals. Because there was little difference in
confidence interval by year, only the widest confidence intervals
(either from 2005 or 2006) are displayed.

TABLE 4. Relative support for two-species occupancy models for Black and Virginia Rails with occupancy covariates and species
3 covariate interaction terms.

Occupancy covariates N wþ

Area, Area 3 Species(C), Area2, Area2 3 Species(C) 3 0.353
Area, Area 3 Species(C), Area2, Area2 3 Species(C), Year 3 0.279
Area, Area 3 Species(C), Area2, Area2 3 Species(C), Year, Year 3 Species(C) 3 0.105
Area, Area 3 Species(C) 3 0.080
Area, Area 3 Species(C), Year 3 0.065
Area, Area 3 Species(U) 6 0.039
Area, Area 3 Species(U), Year 6 0.026
Area, Area 3 Species(C), Year, Year 3 Species(U) 3 0.026
Area, Area 3 Species(U), Year, Year 3 Species(U) 6 0.011
Area, Area 3 Species(U), Area2, Area2 3 Species(U) 6 0.008
Area, Area 3 Species(U), Area2, Area2 3 Species(U), Year 6 0.005
Area, Area 3 Species(U), Area2, Area2 3 Species(U), Year, Year 3 Species(U) 6 0.002
Area, Area2, Year 6 0.000
Area, Area2 6 0.000
Area, Area2, Year, Year 3 Species(U) 6 0.000
Area, Year 6 0.000
Area 6 0.000
Area, Year, Year 3 Species(U) 6 0.000
(.) 6 0.000
Year 6 0.000
Year, Year 3 Species(U) 6 0.000

Note: U stands for unconditional; C stands for conditional; N is the number of models; wþ is the relative importance weight, the
summed Akaike weights for all models sharing a given model structure in the set of 108 models (Appendix B).
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2006), it successfully incorporates occupancy covariates

to allow stronger inferences to be made about co-

occurrence patterns. Like the MacKenzie et al. (2004,

2006) parameterization, it improves over past studies of

interspecific competition that relied on observations of

community composition but did not account for false

absences (Diamond 1975, Schluter 1984, Minot and

Perrins 1986). The conditional two-species parameteri-

zation also models the effects of the presence or

detection of one species on the detection probability of

the other species. Such effects could be especially

important for species pairs with strongly asymmetric

competition, or when the presence of one species may

suppress the detection of another, as in a predator–prey

pair. For example, Barred Owl (Strix varia) and

Northern Spotted Owl (Strix occidentalis) presence each

had negative effects on the detection probabilities of the

other species (Olson et al. 2005, Bailey et al. 2009).

Two-species occupancy models that incorporate

detection probabilities and covariates can make impor-

tant contributions to studies of species co-occurrence

across environmental gradients. A strength of the

conditional two-species model parameterization is that

covariates can be modeled simultaneously with the

species interaction, allowing alternative explanations of

observed species distribution patterns to be examined

(e.g., species-specific responses to habitat characteristics,

patch size, elevation, isolation, and so forth). At present,

the best use of two-species models is for examining

interactions between species pairs for which there might

be a priori reasons to hypothesize an interaction.

However, demonstrating (or failing to demonstrate) a

negative association between two species only provides

circumstantial evidence that interspecific competition is

present or absent (Wiens 1989): an occupancy pattern

that appears to be consistent with competitive exclusion

could be driven by habitat or other factors that are

excluded from the model, or competition could be

operating on a different spatial scale than the scale at

which observations were made. Identifying a negative

association between two species may indicate competi-

tion, but this observation should be followed up, if

possible, by direct experiments.

A potential drawback of two-species occupancy

models can be the large number of parameters required

for estimation. Candidate sets for two-species models

can quickly amplify when up to eight parameters must

be estimated (Fig. 1) and due to the multiplicative effect

of adding covariates; for example, each combination of

covariates for species A can be tested against every

combination for species B in both conditional and

unconditional formulations. To reduce the candidate set

to a manageable number of models, we used a two-stage

approach to model fitting, in which we first examined

covariates for detection and then used the best detection

covariates in the second modeling stage to test the main

FIG. 4. The species interaction factor (SIF) as a function of
marsh area and survey year. Results were model-averaged
across the top-performing 20 models presented in Table 2
(cumulative Akaike weight of 0.952) out of a total set of 108
models (Appendix B). An SIF .1 indicates that the two species
occur together more often than expected by chance, whereas an
SIF ,1 indicates that the two species occur together less often
than expected by chance; SIF¼ 1 indicates that the two species
occur independently (no aggregation or avoidance). ‘‘Median’’
is the median marsh area. Thin lines are 2005 data, and heavy
lines are 2006 data. Gray lines show 95% confidence intervals.
Because there was little difference in confidence interval by
year, only the widest confidence intervals (either from 2005 or
2006) are displayed.

FIG. 3. Estimated probabilities of occupancy for Black
Rails (BR) conditional on the presence or absence of Virginia
Rails (VR) as a function of marsh area and survey year. Results
were model-averaged across the top-performing 20 models
presented in Table 2 (cumulative Akaike weight of 0.952) out of
a total set of 108 models (Appendix B). ‘‘Median’’ is the median
marsh area. Thin lines are 2005 data, and heavy lines are 2006
data. Gray lines show 95% confidence intervals. Because there
was little difference in confidence interval by year, only the
widest confidence intervals (either from 2005 or 2006) are
displayed.
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hypotheses. Careful consideration of appropriate covar-

iates and critical thinking during the formulation of the

candidate model set is essential (Burnham and Anderson

2002). The large number of parameters necessitates very

large data sets and may make it difficult to apply similar

model structures to multispecies communities

(MacKenzie et al. 2006).

Two-species occupancy models provide a useful

method for making inferences about interactions be-

tween cryptic species, such as the secretive rails in this

study, because direct observations of such species’

interactions are exceedingly rare. We found no evidence

that the presence or detection of Virginia Rails affected

the detection probability of Black Rails, and the two

species showed a positive association across a range of

marsh sizes. The positive occupancy association could

suggest overlapping habitat preferences at the patch

level, where coexistence may be maintained by micro-

habitat or resource partitioning (Chesson 2000).

Differences between these rail species in bill size, leg

length, and feeding behavior support this contention

(Eddleman et al. 1994, Conway 1995). Although we

found no evidence of competitive exclusion, the rela-

tionship between occupancy and marsh size differed

slightly by species; for Black Rails it depended on the

occurrence of Virginia Rails, albeit in an unexpected

manner. Surprisingly, Black Rails were more likely to

occur in small marshes that were occupied by Virginia

Rails than in marshes without Virginia Rails (Figs. 3

and 4). Perhaps small marshes that are high in overall

habitat quality can support both rail species, whereas

low-quality sites can support neither species. Although

occupancy of both species increased with marsh area,

Black Rails were more likely to occupy smaller marshes

than Virginia Rails (Fig. 3), probably due to their

smaller home range requirements.

Our findings for wetland rails contrast with studies of

birds in which large- and medium-sized species appeared

to outcompete small species for space or resources in

patchy forest systems (Brown and Sullivan 2005, Brown

2007) and within nectarivorous bird assemblages (Grey

et al. 1997, Mac Nally and Timewell 2005). Black and

Virginia Rails coexist, even in very small wetlands where

resources are presumed to be more limiting. This

suggests that body size difference alone may be a poor

indicator of interspecific competitive exclusion in some

guilds.

The conditional two-species occupancy model pro-

vides a useful tool for testing hypotheses of co-

occurrence and could make important contributions to

projecting future species distributions with climate

change. Future research could focus on expanding

two-species occupancy models to more complex multi-

species communities. Also, extending the model to

multiple sampling periods (MacKenzie et al. 2006)

would allow stronger inferences to be made about

underlying species interactions. A multi-season two-

species model would include parameters for local

colonizations and extinctions of a species that are

conditional on the presence of another species. Finally,

a potentially powerful application for two-species or

multiple-species models is in the prediction of commu-

nity responses to climate change. Most conventional

species distribution models treat species as distinct units

that respond individualistically to climatic conditions

(Elith and Leathwick 2009). The SIF derived from two-

species or multiple-species models provides a measure of

interaction that could be incorporated into species

distribution models to create more mechanistic projec-

tions of species ranges under alternative climate change

scenarios. Such models will further improve our ability

to examine species interactions and distributions in

ecological communities.
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APPENDIX A

Evaluation of the effect of covariates on detection probability for Black Rails (Laterallus jamaicensis coturniculus) and Virginia
Rails (Rallus limicola) in palustrine emergent wetlands in the northern Sierra Nevada foothills, California, USA, 2005–2006
(Ecological Archives A020-073-A1).

APPENDIX B

Complete model set examining the effects of covariates on occupancy probability for Black Rails (Laterallus jamaicensis
coturniculus) and Virginia Rails (Rallus limicola) in palustrine emergent wetlands in the northern Sierra Nevada foothills,
California, USA, 2005–2006 (Ecological Archives A020-073-A2).
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